Growth-type Invariants for Z Subshifts of Finite Type and Classes Arithmetical of Real Numbers

نویسنده

  • TOM MEYEROVITCH
چکیده

We discuss some numerical invariants of multidimensional shifts of finite type (SFTs) which are associated with the growth rates of the number of admissible finite configurations. Extending an unpublished example of Tsirelson [15], we show that growth complexities of the form exp(n) are possible for non-integer α’s. In terminology of [3], such subshifts have entropy dimension α. The class of possible α’s are identified in terms of arithmetical classes of real numbers of Weihrauch and Zheng [16].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the type of conjugacy classes and the set of indices of maximal subgroups

‎Let $G$ be a finite group‎. ‎By $MT(G)=(m_1,cdots,m_k)$ we denote the type of‎ ‎conjugacy classes of maximal subgroups of $G$‎, ‎which implies that $G$ has exactly $k$ conjugacy classes of‎ ‎maximal subgroups and $m_1,ldots,m_k$ are the numbers of conjugates‎ ‎of maximal subgroups of $G$‎, ‎where $m_1leqcdotsleq m_k$‎. ‎In this paper‎, ‎we‎ ‎give some new characterizations of finite groups by ...

متن کامل

Hardness of conjugacy and factorization of multidimensional subshifts of finite type

We investigate here the hardness of conjugacy and factorization of subshifts of finite type (SFTs) in dimension d > 1. In particular, we prove that the factorization problem is Σ3-complete and the conjugacy problem Σ1-complete in the arithmetical hierarchy.

متن کامل

A Matrix Formalism for Conjugacies of Higher-dimensional Shifts of Finite Type

We develop a natural matrix formalism for state splittings and amalgamations of higher-dimensional subshifts of finite type which extends the common notion of strong shift equivalence of Z+-matrices. Using the decomposition theorem every topological conjugacy between two Zd-shifts of finite type can thus be factorized into a finite chain of matrix transformations acting on the transition matric...

متن کامل

A new algebraic invariant for weak equivalence of sofic subshifts

It is studied how taking the inverse image by a sliding block code affects the syntactic semigroup of a sofic subshift. Two independent approaches are used: ζ-semigroups as recognition structures for sofic subshifts, and relatively free profinite semigroups. A new algebraic invariant is obtained for weak equivalence of sofic subshifts, by determining which classes of sofic subshifts naturally d...

متن کامل

Hardness of Conjugacy, Embedding and Factorization of multidimensional Subshifts of Finite Type

Subshifts of finite type are sets of colorings of the plane defined by local constraints. They can be seen as a discretization of continuous dynamical systems. We investigate here the hardness of deciding factorization, conjugacy and embedding of subshifts of finite type (SFTs) in dimension d > 1. In particular, we prove that the factorization problem is Σ3-complete and that the conjugacy and e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009